NMN (Nicotinamide Mononucleotide) 學(xué)名為β-煙酰胺單核苷酸,是維生素B3(煙酰胺)的一種衍生物分子量為334.221 g/mol。NMN的結(jié)構(gòu)可分為α和β兩種異構(gòu)體,其中只有β-NMN為天然存在的形式,具有生物活性[1]。
NMN本身是人類和生物體內(nèi)自然生成的物質(zhì)。天然的NMN可從多種食物中獲得,NMN在一些常見(jiàn)食物中的含量如下圖所示。由于在食物中含量較少,人類很難完全通過(guò)飲食來(lái)滿足自身對(duì)于NMN的需求[2]。
NAD+與人體健康
NAD+又叫輔酶I,全稱煙酰胺腺嘌呤二核苷酸,存在于每一個(gè)生物細(xì)胞中,參與上千項(xiàng)生化反應(yīng)。在多種細(xì)胞代謝反應(yīng)中,煙酰胺腺嘌呤二核苷酸(NAD+)分子都扮演著重要角色,是細(xì)胞保持活力的重要支撐物質(zhì)。
人體內(nèi)的NAD+大約每20年減少一半,衰老過(guò)程中NAD的下降被認(rèn)為是導(dǎo)致疾病和殘疾的主要原因,如聽(tīng)力和視力喪失,認(rèn)知和運(yùn)動(dòng)功能障礙,免疫缺陷,自身免疫炎癥反應(yīng)失調(diào)導(dǎo)致的關(guān)節(jié)炎、代謝障礙和心血管疾病[3]。隨著年齡增長(zhǎng),NAD+水平的降低導(dǎo)致DNA修復(fù)能力下降, DNA損傷積累,驅(qū)動(dòng)衰老進(jìn)程。
NAD+人體中的作用主要分為兩類,第一類是作為輔酶,在細(xì)胞中參與各種生化反應(yīng),促進(jìn)能量代謝過(guò)程(如葡萄糖、脂肪、氨基酸的氧化)。NAD+和NADH氧化還原對(duì)是多種依賴于電子交換的生化反應(yīng)的關(guān)鍵因素,特別是涉及氧化還原酶介導(dǎo)的氫化物轉(zhuǎn)移的氧化還原反應(yīng)。在這些反應(yīng)中,NAD+是電子受體,而NADH是電子供體。許多需要NAD(H)作為輔酶的反應(yīng)都與分解代謝和獲取代謝能量有關(guān),包括酒精代謝、糖酵解、丙酮酸氧化脫羧生成乙酰輔酶A、脂肪酸β氧化、三羧酸循環(huán)等。
除了可以作為還原反應(yīng)的輔酶,NAD+還被發(fā)現(xiàn)可以作為非氧化還原反應(yīng)的共底物,即作為去乙酰化酶sirtuin家族的共底物,可以有效協(xié)調(diào)線粒體功能、代謝和衰老。在這之后,研究者們開(kāi)始陸續(xù)發(fā)現(xiàn)其他重要的NAD+消耗酶,如環(huán)二磷酸核糖(cADPR)合成酶(包括CD38和CD157)和聚二磷酸核糖聚合酶(PARP)蛋白家族,以及神經(jīng)元中的SARM1。David Sinclair博士的團(tuán)隊(duì)研究表明,NAD+含量下降的罪魁禍?zhǔn)灼鋵?shí)正是蛋白酶CD38,它像剪刀一樣剪碎NAD+分子。CD38的表達(dá)和活性會(huì)隨著衰老過(guò)程而逐漸增加,在某些組織和細(xì)胞中可能會(huì)高出幾倍[4]。
NMN與NAD+
NAD+分子較大,無(wú)法被人體直接吸收利用,直接口服攝入的 NAD+ 主要在小腸內(nèi)被刷狀緣細(xì)胞水解。從思路上來(lái)說(shuō),補(bǔ)充NAD+的確還有另一種方法,就是想辦法補(bǔ)充某種物質(zhì),使其在人體內(nèi)自主合成NAD+。人體中合成NAD+的途徑有3種:Preiss-Handler途徑、從頭合成途徑和補(bǔ)救合成途徑。雖說(shuō)三種途徑都能合成NAD+,但也有個(gè)主次之分。其中,前兩種合成途徑產(chǎn)生的NAD+只占人體NAD+總量的15%左右,剩下的85%都是通過(guò)補(bǔ)救合成的途徑來(lái)實(shí)現(xiàn)的。也就是說(shuō),補(bǔ)救合成途徑才是人體補(bǔ)充NAD+的關(guān)鍵[5]。
在NAD+的前體中,煙酰胺(NAM)、NMN和煙酰胺核糖(NR)都是通過(guò)補(bǔ)救合成途徑來(lái)合成NAD+,因此這三種物質(zhì)就成為了人體補(bǔ)充NAD+的選擇。
NAM目前主要用在化妝品中,起到美白的功效。補(bǔ)充過(guò)多的NAM,會(huì)導(dǎo)致皮膚發(fā)熱發(fā)紅、瘙癢。另外,NAM在轉(zhuǎn)化成NAD+的過(guò)程中,還會(huì)受到NAMPT限制酶的限制,很難起到很好的效果[6]。
NR雖然本身沒(méi)有副作用,但在合成NAD+的過(guò)程中,大部分并不是直接轉(zhuǎn)換成了NMN,而是需要先被消化成NAM,再參與合成NMN,這中間依然逃脫不了限速酶的限制。所以,通過(guò)口服NR來(lái)補(bǔ)充NAD+的能力也有限[7]。
NMN作為補(bǔ)充NAD+的前體,不僅繞過(guò)了限速酶的限制,在體內(nèi)的吸收還非常迅速,能直接轉(zhuǎn)變?yōu)镹AD+。因此可以作為補(bǔ)充NAD+直接、迅速的有效方法。
NMN合成方法
NMN目前的主要生產(chǎn)方法有三種:包括化學(xué)合成法,發(fā)酵法和生物酶催化法。
化學(xué)合成法:化學(xué)合成的技術(shù)相對(duì)比較簡(jiǎn)單,成本較其余兩種方法低很多?;瘜W(xué)法通常需要多步反應(yīng),整體產(chǎn)率不高,可以通過(guò)后續(xù)的分離純化來(lái)提高產(chǎn)品的純度。由于NMN具有α和β兩種構(gòu)型,化學(xué)法無(wú)法選擇性合成純的β-NMN,手性純度不高。化學(xué)法過(guò)程中產(chǎn)生的雜質(zhì)為人體內(nèi)沒(méi)有的,是額外的雜質(zhì)(主要是化學(xué)溶劑等等),雖然也是微量的,但是不排除雜質(zhì)在體內(nèi)積累,長(zhǎng)期對(duì)人體可能有害。
發(fā)酵法:這個(gè)主要代表是日本新興和的技術(shù)產(chǎn)品,技術(shù)壁壘較高,產(chǎn)量較低,所以價(jià)格非常昂貴。
生物酶催化法:這個(gè)就是我們通常所說(shuō)的酶法技術(shù),這個(gè)方法是模擬體內(nèi)NMN的代謝路徑,將體內(nèi)酶進(jìn)行體外表達(dá),實(shí)現(xiàn)體外酶催化反應(yīng),從而生產(chǎn)NMN。酶法的生產(chǎn)過(guò)程與生物體內(nèi)過(guò)程一致,基本無(wú)額外雜質(zhì)產(chǎn)生(純度都在99%以上)。酶法可進(jìn)一步分為一步酶法和全酶法。一步酶法是以化學(xué)合成的NR為原料,通過(guò)一步酶催化反應(yīng)合成NMN。全酶法是以天然提取的核心原料,通過(guò)模擬生物體內(nèi)多步酶催化反應(yīng)來(lái)合成NMN。全酶法不涉及到化學(xué)原料,安全性較高,同時(shí)具有較高的技術(shù)壁壘。
生物酶催化法是目前比較通行的生產(chǎn)方式,門檻較高,幾個(gè)關(guān)鍵催化酶價(jià)格不菲,約占整個(gè)生產(chǎn)過(guò)程成本的 80%,但也是兼?zhèn)淞税踩c高效的生產(chǎn)方式。通過(guò)全酶法生產(chǎn)的NMN產(chǎn)品,在產(chǎn)品純度,安全性和穩(wěn)定性上都優(yōu)于其他生產(chǎn)方法,是市場(chǎng)上各大主流廠家的優(yōu)先選擇。